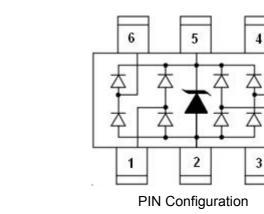


Product data sheet

www.msksemi.com

FEATURES:


100 watts peak pulse power per line (t_P=8/20µs)

USB 2.0&3.0 power and data line protection

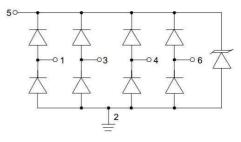
- Protects four I/O lines
- Low clamping voltage
- Low operating voltage
- Low capacitance
- **RoHS** compliant

MAIN APPLICATIONS

10/100/1000 ethernet SIM ports ATM interfaces

Monitors and flat panel displays

PROTECTION SOLUTION TO MEET


Digital video interface (DVI)

Notebook computers Video graphics cards

IEC61000-4-2 (ESD) ±20kV (air), ±20kV (contact) IEC61000-4-4 (EFT) 40A (5/50ns) IEC61000-4-5 (Lightning) 5A (8/20µs)

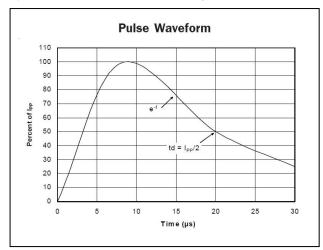
MECHANICAL CHARACTERISTICS

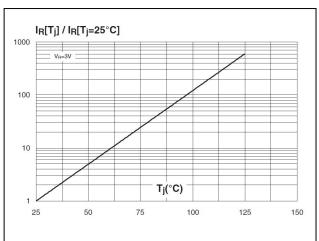
Molding compound flammability rating: UL 94V-0 Quantity per reel: 3, 000pcs Lead finish: lead free

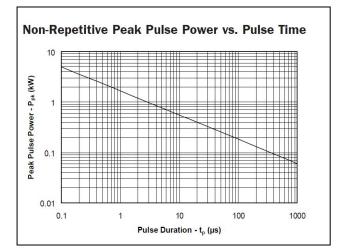
Circuit Diagram

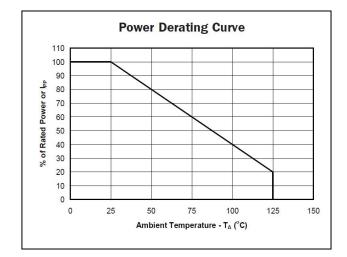
ABSOLUTE MAXIMUM RATINGS (TA=25 °C, RH=45%-75%, unless otherwise noted)

Parameter	Symbol	Value	Unit
Peak pulse power dissipation on 8/20µs waveform	P _{PP}	100	W
ESD per IEC 61000-4-2 (Air) ESD per IEC 61000-4-2 (Contact)	V _{ESD}	+/- 20 +/-20	kV
Lead soldering temperature	TL	260 (10 sec.)	°C
Operating junction temperature range	TJ	-55 to +125	°C
Storage temperature range	T _{STG}	-55 to +150	°C

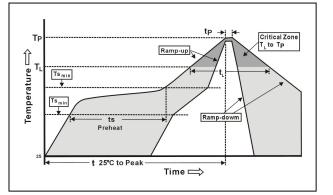

ELECTRICAL CHARACTERISTICS (T_A=25°C)


Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Reverse working voltage	V _{RWM}				5.0	V
Reverse breakdown voltage	V _{BR}	I⊤=1mA	6.0			V
Reverse leakage current	I _R	V _{RWM} =5V			1	μA
Forward voltage	VF	I⊤=10mA		0.8	1.0	V
Clamping voltage (I/O pin to Ground)	Vc	I _{PP} =1A, t _P =8/20µs		9.5	11	V
	Vc	I _{PP} =5Α, t _P =8/20μs		12.5	15	
Junction capacitance	6	V _{RWM} =0V, f=1MHz Any I/O pin to Ground		0.65	0.8	ηE
	CJ	V _{RWM} =0V, f=1MHz Between I/O pins		0.3	0.5	pF

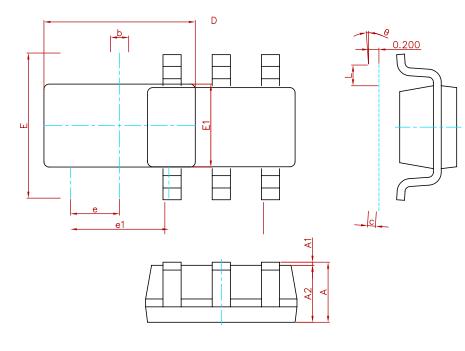


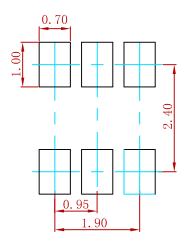


Typical Characteristics@ Ta=25 $^\circ\!\!\mathbb{C}$ unless otherwise specified



Soldering Parameters


Reflow Condition		Fb – Free assembly	
	- Temperature Min (T _{s(Min)})	150°C	
Pre Heat	- Temperature Max (T _{s(Max)})	200°C	
	-Time (Min to max) (t _s)	60 – 180 secs	
Average ramp up rate (Liquidus) Temp (T _L) to peak		3°C/second Max	
T _{s (Max)} to T _L - Ramp-up Rate		3°C/second Max	
	-Temperature (T _L) (Liquidus)	217°C	
Reflow	-Temperature (t _L)	60 – 150 seconds	
Peak Temperature (T _p)		250 ^{+0/-5} °C	
Time within 5°C of actual peak Temperature (t _p)		20 – 40 seconds	
Ramp-dowm Rate		6°C/second Max	
Time 25°C to peak Temperature (T _P)		8 minutes Max.	
Do not exceed		260°C	



PACKAGE MECHANICAL DATA

Symbol	Dimensions In Millimeters		Dimension	s In Inches
Symbol	Min.	Max.	Min.	Max.
Α	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
С	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
E1	1.500	1.700	0.059	0.067
E	2.650	2.950	0.104	0.116
е	0.950(BSC)		0.037	(BSC)
e1	1.800	2.000	0.071	0.079
L	0.300	0.600	0.012	0.024
θ	0°	8°	0°	8°

Suggested Pad Layout

Note:

Controlling dimension:in millimeters.
General tolerance:±0.05mm.
The pad layout is for reference purposes only.

REEL SPECIFICATION

P/N	PKG	QTY
MSRV05-4	SOT-23-6	3000

Semiconductor

Attention

■ Any and all MSKSEMI Semiconductor products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your MSKSEMI Semiconductor representative nearest you before using any MSKSEMI Semiconductor products described or contained herein in such applications.

MSKSEMI Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications f any and all MSKSEMI Semiconductor products described orcontained herein.

■ Specifications of any and all MSKSEMI Semiconductor products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

■ MSKSEMI Semiconductor. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with someprobability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits anderror prevention circuits for safedesign, redundant design, and structural design.

■ In the event that any or all MSKSEMI Semiconductor products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from theauthorities concerned in accordance with the above law.

■ No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of MSKSEMI Semiconductor.

■ Information (including circuit diagrams and circuit parameters) herein is for example only ; it is not guaranteed for volume production. MSKSEMI Semiconductor believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

 Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. Whendesigning equipment, refer to the "Delivery Specification" for the MSKSEMI Semiconductor productthat you intend to use.