
MSKSEMI

ESD

TVS

TSS

MOV

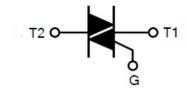
GDT

PLED

Broduct data sheet

SOT-89

Daalyaga	Pin	assignn	signment		
Package	1	2	3		
SOT-89	T1	Т2	G		


FEATURES

- Direct interfacing to logic level ICs
- Direct interfacing to low power gate drivers and microcontrollers
- High blocking voltage capability
- Planar passivated for voltage ruggedness and reliability
- Triggering in all four quadrants
- Very sensitive gate

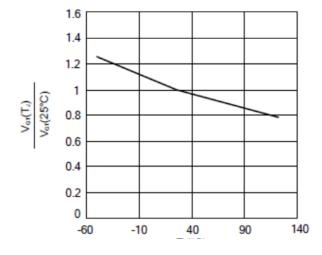
APPLICATIONS

- General purpose bidirectional switching
- General purpose low power phase control
- General purpose low power switching
- Solid-state relay

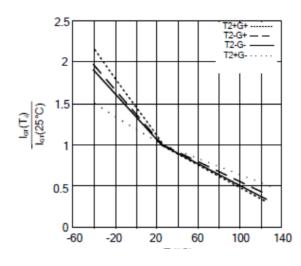
SYMBOL:

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	VALUE		UNIT		
Panatitiva Paak Off State Voltages	V _{DRM,} V _{RRM}	MAC97A6 400		V		
Repetitive Peak Off-State Voltages		MAC9	MAC97A8 600] V	
RMS on-State Current	I _{T(RMS)}		8.0		Α	
Non-Repetitive Peak On-State Current	I _{TSM}		8		Α	
I ² t for fusing	l²t		0.32		A ² s	
	JIT/-14	I		50		
Repetitive rate of rise of on-state current after triggering		II		50	A /C	
	dIT/dt	III		50	A/uS	
		IV		10		
Peak gate current	I _{GM}		1		Α	
Peak Gate Voltage	V_{GM}		5		V	
Peak Gate Power	P_{GM}		5		W	
Average Gate Power	$P_{G(AV)}$		0.1		W	
Operating junction temperature	TJ		+125		$^{\circ}$	
Storage Temperature	T _{STG}	_	40 ~ +1	150	$^{\circ}$	



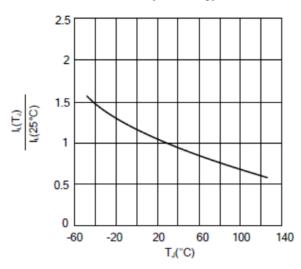
ELECTRICAL CHARACTERISTICS (TJ=25°C)

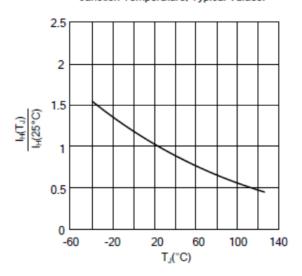

PARAMETER	SYMBOL	TEST CONDITIONS		MIN	MAX	UNITS
Peak Repetitive Forward or Reverse Blocking Current	I _{DRM} I _{RRM}	V_{AK} = Rated V_{DRM} or V_{RRM} ;			10	uA
			I		5.0	
Gate Trigger Current	I _{GT}	$V_D = 12V$ $I_{GT} = 0.1A$	II		5.0	mA
			III		5.0	
			IV		7.0	
Gate Trigger Voltage	V_{GT}	$V_D=12V$, RL= 100Ω			2.0	V
Peak Forward On-State Voltage	V _{TM}	IT=1.0A,			1.7	V
			I		10	
Holding Current	IL	V _D =12V	II		20	m ^
		I _G =0.1A,	III		10	mA
			IV		10	
Latch Current	I_{H}	V _D =12V ,IG=0.1A			10	mA
Critical Rate of Rise of Off-State Voltage	dV/dt	$V_D=67\%V_{DRM}, R_{GK}=1k\Omega,$		10		V/µs

ELECTRICAL CHARACTERISTIC CURVE

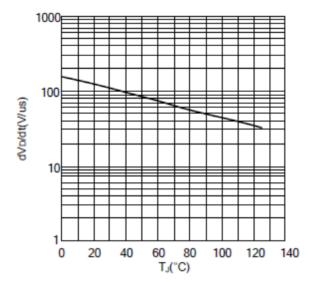
Normalized Gate Trigger Voltage as a of Function Junction Temperature; Typical Values.

Normalized Gate Trigger Current as a Function of Junction Temperature; Typical Values.

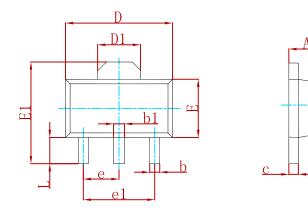




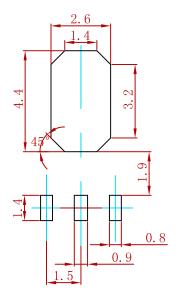

Normalized Latching Current as a Function of Junction Temperature; Typical Values.


Normalized Holding Current as a Function of Junction Temperature; Typical Values.

On-State Current as a Function of On-State Voltage; Typical and Maximum Values.



Critical Rate of Rise of Off-State Voltage as a Function of Junction Temperature; Typical Values.



PACKAGE MECHANICAL DATA

Symbol	Dimensions In Millimeters		Dimension	s In Inches
Symbol	Min	Max	Min	Max
Α	1.400	1.600	0.055	0.063
b	0.320	0.520	0.013	0.020
b1	0.400	0.580	0.016	0.023
С	0.350	0.440	0.014	0.017
D	4.400	4.600	0.173	0.181
D1	1.550 REF.		0.061 REF.	
E	2.300	2.600	0.091	0.102
E1	3.940	4.250	0.155	0.167
е	1.500 TYP.		0.060 TYP.	
e1	3.000 TYP.		0.118 TYP.	
L	0.900	1.200	0.035	0.047

Suggested Pad Layout

Note:

- 1.Controlling dimension:in millimeters.
- 2.General tolerance:±0.05mm.
- 3. The pad layout is for reference purposes only.

REEL SPECIFICATION

P/N	PKG	QTY
MAC97A6 THRU MAC97A8	SOT-89	1000

Semiconductor Compiance

Attention

- Any and all MSKSEMI Semiconductor products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your MSKSEMI Semiconductor representative nearest you before using any MSKSEMI Semiconductor products described or contained herein in such applications.
- MSKSEMI Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specificationsof any andall MSKSEMI Semiconductor products described orcontained herein.
- Specifications of any and all MSKSEMI Semiconductor products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- MSKSEMI Semiconductor. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with someprobability. It is possiblethat these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits anderror prevention circuitsfor safedesign, redundant design, and structural design.
- In the event that any or all MSKSEMI Semiconductor products(including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from theauthorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of MSKSEMI Semiconductor.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. MSKSEMI Semiconductor believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringementsof intellectual property rights or other rightsof third parties.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. Whendesigning equipment, referto the "Delivery Specification" for the MSKSEMI Semiconductor productthat you intend to use.